Распространение электромагнитных волн

Last update Вс, 29 Янв 2017 11pm

Как распространяются электромагнитные волны?

  • " onclick="window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,w > Печать
  • E-mail

Дата Категория: Физика

Каждый раз, когда электрический ток изменяет свою частоту или направление, он генерирует электромагнитные волны — колебания электрического и магнитного силовых полей в пространстве. Один из примеров — изменяющийся ток в антенне радиопередатчика, который создает кольца распространяющихся в пространстве радиоволн.

Энергия электромагнитной волны зависит от ее длины — расстояния между двумя соседними «пиками». Чем меньше длина волны, тем выше ее энергия. В порядке убывания своей длины электромагнитные волны подразделяются на радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучение. Длина волны гамма-излучения не достигает и одной стомиллиардной метра, в то время как радиоволны могут иметь длину, исчисляющуюся в километрах.

Электромагнитные волны распространяются в пространстве со скоростью света, а силовые линии их электрического и магнитного полей располагаются под прямым углом друг к другу и к направлению движения волны.

Электромагнитные волны расходятся постепенно расширяющимися кругами от передающей антенны двусторонней радиостанции аналогично тому, как это делают волны, вызванные падением камешка в пруд. Переменный электрический ток в антенне создает волны, состоящие из электрического и магнитного полей.

Схема электромагнитной волны

Электромагнитная волна распространяется прямолинейно, а ее электрическое и магнитное поле перпендикулярны потоку энергии.

Преломление электромагнитных волн

Так же как и свет, все электромагнитные волны преломляются, когда входят в вещество под любым углом, кроме прямого.

Отражение электромагнитных волн

Если электромагнитные волны падают на металлическую параболическую поверхность, они фокусируются в точке.

Рост электромагнитных волн

ложный узор электромагнитных волн, исходящих из передающей антенны, возникает из одиночного колебания электрического тока. Когда ток течет вверх по антенне, электрическое поле (красные линии) направлено сверху вниз, а магнитное поле (зеленые линии) — против часовой стрелки. Если ток изменяет свое направление, то же самое происходит с электрическим и магнитным полями.

См. также: Портал:Физика

Электромагни́тные во́лны / электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. [1]

Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Содержание

Характеристики электромагнитного излучения [ править | править код ]

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света [2] .

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определённые более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и её разделы) и радиофизика. Жёстким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий [3] ; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестаёт быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при ещё более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Читайте также:  Молочница на грудных железах при гв симптомы

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной [4] из завершённых и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поляE и вектора напряжённости магнитного поляH.
Виды энергии:
Механическая Потенциальная
Кинетическая
‹ ♦ › Внутренняя
Электромагнитная Электрическая
Магнитная
Химическая
Ядерная
G <displaystyle G> Гравитационная
∅ <displaystyle emptyset > Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии
  • электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Диапазоны электромагнитного излучения [ править | править код ]

Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Название диапазона Длины волн, λ Частоты, f Источники
Радиоволны Сверхдлинные более 10 км менее 30 кГц Атмосферные и магнитосферные явления. Радиосвязь.
Длинные 10 км — 1 км 30 кГц — 300 кГц
Средние 1 км — 100 м 300 кГц — 3 МГц
Короткие 100 м — 10 м 3 МГц — 30 МГц
Ультракороткие 10 м — 0,1 мм 30 МГц — 3000 ГГц [5]
Инфракрасное излучение 1 мм — 780 нм 300 ГГц — 429 ТГц Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое излучение 780—380 нм 429 ТГц — 750 ТГц
Ультрафиолетовое 380нм — 10нм 7,5⋅10 14 Гц — 3⋅10 16 Гц Излучение атомов под воздействием ускоренных электронов.
Рентгеновские 10 нм — 5 пм 3⋅10 16 Гц — 6⋅10 19 Гц Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма менее 5 пм более 6⋅10 19 Гц Ядерные и космические процессы, радиоактивный распад.
Читайте также:  Рак молочной железы 4 степени фото

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и децимиллиметровые волны (гипервысокие частоты, ГВЧ, 300—3000 ГГц) — стандартные диапазоны радиоволн по общепринятой классификации [5] . По другой классификации указанные стандартные диапазоны радиоволн, исключая метровые волны, называют микроволнами или волнами сверхвысоких частот (СВЧ) [6] .

Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ , а энергия гамма-квантов — больше 0,1 МэВ . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).

Радиоволны [ править | править код ]

Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.

Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.

Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.

3.2.2 Распространение электромагнитных волн

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием. Такое излучение называется электромагнитными волнами.

Электромагнитные волны способны распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитные волны распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Для измерения расстояний используются электромагнитные волны почти всех диапазонов, указанных в табл. 3.1, кроме ультрафиолетового излучения в оптическом диапазоне, коротких радиоволн и ионизирующих излучений.

При измерении расстояний при помощи электромагнитных волн, как на дальность действия, так и на точность сильное влияние оказывают условия распространения. Под этим понимается целый комплекс факторов: свойства самих волн, характер подстилающей поверхности, время суток, метеорологические условия атмосферы и т.д.

Световые волны и волны УКВ диапазона распространяются почти прямолинейно.

Дифракция сантиметровых волн, используемых в радиодальномерах и УКВ системах, настолько мала, что не приводит к огибанию поверхности Земли. Такое огибание в незначительной степени существует только за счет рефракции .

( Дифракция – это явление отклонения от законов геометрической оптики при распространении волн. В частности, это отклонение от прямолинейности распространения светового луча. Рефракция или преломление – это изменение направления распространения электромагнитного излучения, возникающее на границе раздела двух прозрачных для этих волн сред или в толще среды с непрерывно изменяющимися свойствами).

Максимальная дальность действия систем УКВ диапазона ограничивается пределами прямой видимости. Пределы прямой видимости на физической поверхности Земли зависят от высоты подъема антенн и рельефа местности. Если учитывать только кривизну сферической Земли (без рельефа) и пренебречь рефракцией, то предельное расстояние прямой видимости между двумя пунктами определяются высотами пунктов и следующим образом:

Читайте также:  6 Дпо тянет низ живота и поясницу

, (3.29)

где выражается в километрах, а высоты – в метрах.

При учете рефракционного искривления траектории (при нормальной рефракции) коэффициент 3.57 в уравнении (3.29) заменяется на 4.12 для радиоволн, и на 3.83 для оптических волн, т.е. рефракция увеличивает расстояние прямой видимости примерно на 15% для радиоволн, и на 7% для волн оптического диапазона.

В случае, если, например, антенны дальномера и отражателя устанавливаются на обычный деревянный штатив, т.е. , то расстояние прямой видимости, рассчитанное по формуле (3.29), составит . Если же антенны будут подняты на высоту , то расстояние прямой видимости составит уже .

Для оптических волн, кроме прямой видимости, требуется также наличие оптической видимости (прозрачности).

Рис. 3.8 – Распространение УКВ и волн оптического диапазона в виде прямой волны

Распространение длинных и средних радиоволн имеет специфические особенности. Наиболее существенная особенность – отражение от верхних, сильно ионизированных слоев атмосферы, находящихся на высотах более 60 км.

Рис. 3.9 – Отражение радиоволн от ионосферы

Рис. 3.10 – Распространение радиоволн в виде многократного отражения радиоволн от ионосферы

Это приводит к тому, что в точку приема может попасть не только прямая волна, распространяющаяся вдоль поверхности Земли (поверхностная волна), но и волна, отраженная от ионосферы, — так называемая пространственная волна (рис. 3.11). В зоне встречи поверхностной и пространственной волн происходит их интерференция, из-за чего поверхностная волна, передающая полезный сигнал, получает искажения амплитуды и фазы, и если приемная аппаратура находится в такой зоне, то измерения могут быть весьма затруднены, а часто и невозможны.

Рис. 3.11 – Распространение поверхностной и пространственной волн в атмосфере

Рис. 3.12 – Распространение радиоволн в атмосфере

Пространственная волна, отраженная от ионосферы, может распространяться на значительно большие расстояния, чем поверхностная волна, для которой форма Земли с ее рельефом создает препятствия. Из-за дифракции эти препятствия могут огибаться поверхностной волной, и дальность ее распространения зависит от поглощающих свойств земной поверхности. Для пространственной волны наблюдается также частичное поглощение ее ионосферой и земной поверхностью при многократном отражении от ионосферных слоев. Поглощение земной поверхностью зависит от длины волны, ее поляризации и электрических характеристик конкретной подстилающей поверхности.

Свойство дальнего распространения пространственной волны при многократном отражении от ионосферы успешно используется в радиосвязи, радиовещании и дальней радионавигации. Однако для радиогеодезических целей использование пространственной волны невозможно , так как геометрия ее прохождения не подвергается строгому учету. Поэтому для точных измерений должна использоваться только поверхностная волна .

Исходя из вышесказанного, для целей геодезических измерений пригодны только волны оптического и УКВ диапазона .

Геодезические дальномеры оптического диапазона волн используются главным образом для измерения расстояний до 10 км.

Геодезические дальномеры радиодиапазона используются для измерения расстояний порядка нескольких десятков километров.

Однако в настоящее время практически все производители геодезических дальномеров прекратили выпуск радиодальномеров, и сосредоточили свои усилия на светодальномерах или электронных тахеометрах, составной частью которых является светодальномер. Такая ситуация объясняется тем, что в практике геодезических работ получили распространение технологии, предоставляемые глобальными спутниковыми навигационными системами, благодаря которым появилась возможность высокоточного определения координат точек земной поверхности. Но именно для решения этой задачи и были предназначены радиодальномеры. Измеренное с помощью радиодальномеров расстояние между точками использовалось затем для вычисления координат определяемой точки. Использование приемников ГНСС позволяет исключить промежуточную операцию по измерению расстояния между точками, а получать сразу же координаты определяемой точки.

reekz
Оцените автора
Добавить комментарий

Adblock detector